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Abstract. We use an atom-phonon coupling model, introduced recently for spin-conversion phenomenon,
in order to describe the behaviours of diluted spin conversion compounds. We keep the basic assumption of
the model which is that the interaction between two molecules is harmonic and that the value of the elastic
force constant of this interaction is reduced when one molecule becomes High-Spin. The main features of the
experimental behaviours of diluted spin conversion compounds are qualitatively reproduced. This model
can be founded on the Lennard-Jones potential between molecules.

PACS. 63.20.Kr Phonon-electron and phonon-phonon interactions – 63.50.+x Vibrational states in dis-
ordered systems – 64-60.-i General studies of phase transitions

1 Introduction

Spin conversion (SC) compounds are molecular complexes
in which the central ion, a transition metal ion, exhibits
a low-spin state (LS) ←→ high-spin state (HS) crossover
when the temperature increases. Due to the metallic ion
ligand field and to the pairing energy, the central ion en-
ergy diagram displays a fundamental level with a spin
value which is less than that of the first excited level [1–4].
For example, for iron(II) complexes, the low spin value is
S = 0 and the high spin one is S = 2. For these complexes,
∆, the distance in energy between both levels, is typically
1000 K.

Mössbauer spectroscopy, magnetic susceptibility
measurements, X-ray diffraction, FIR spectroscopie,
differential scanning calorimetry (DSC) and heat ca-
pacity measurements allow to obtain data on (SC)
phenomenon [1,5–11]. From such studies, one can deduce,
for example, the thermal variation of nHS, the (HS)
fraction, that is the fraction of transition metal in the
high spin level.

The high spin fraction function, nHS(T ), deviates from
a Boltzmann population law and can display two differ-
ent behaviours [4,12–14]: (i) either nHS increases contin-
uously with increasing temperature and does not show a
thermal hysteresis; (ii) or nHS shows with increasing tem-
perature a discontinuity and a thermal hysteresis, which is
characteristic of a first order phase transition (called spin
transition).
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Other external factors than temperature, such as pres-
sure, magnetic field and light irradiation, can induce
(LS)←→ (HS) crossover [15–19].

In some compounds, a “two-step” spin-conversion can
be observed with or without first order phase transition. In
such compounds, the high spin fraction increases smoothly
in a range of temperature of few kelvin [7,12,20,21].

It is worth noticing an increasing interest in (SC) com-
pounds for these material have many potential applica-
tions in nanotechnology, for example, in information stor-
age, processing devices or pressure sensors [20,21,30–32].

In order to know more about the interactions between
molecules, studies have been done on (SC) crystalline com-
pounds in which the central ion is replaced by a tran-
sition metal ion, M, which keeps the same spin state
over the scanned temperature range [22–29]. Such stud-
ies have been performed when the central ion is iron (II)
or iron (III).

The principal effects of the dilution of the iron ion are
the following:

• when the pure (SC) compound displays a first order
transition, this transition disappears for a large enough
concentration of the metal M;
• when it displays a continuous spin crossover, the con-

version curve, that is the curve which represent the
nHS(T ) function, is generally shift towards low tem-
perature values and its slope is reduced.

Recently it has been shown that the main features of the
experimental behaviours of non diluted spin conversion
crystalline compounds can be qualitatively reproduced by
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using a microscopic model based on an atom-phonon cou-
pling mechanism [33,34]. In this model, the (SC) com-
pounds molecules are modeled as atoms, each with two
electronic states, a (LS) ground state, and a (HS) excited
state. It is assumed that the interaction between two first
neighbours atoms is harmonic and that the elastic force
constant of this interaction has values which depend on
the electronic states of both atoms. Those values are cho-
sen such as to favour the (HS) level. Thus, it is assumed
that the elastic force constant value is reduced when one
atom becomes (HS). Then, the thermal variation of the
high spin fraction results from the competition between
the electronic parameter ∆ which favours the (LS) level
and the lattice acoustic phonons which favour the (HS)
level. The model is performed on a linear chain of atoms.
The aim of this article is to use this model in order to
interpret the dilution effects. So, we use the previous as-
sumption which is that the elastic force constant value
between two atoms is reduced when one atom becomes
(HS).

In Section 2 we present the model and the chain Hamil-
tonian, in Section 3 we describe the study method used, in
Section 4 we give the obtained results and the last section
is devoted to discussion and conclusion.

2 The model and the chain Hamiltonian

Let us consider a linear chain of N atoms, consisting of
two kinds of atoms: atoms which we call M and atoms
which we call Fe. We suppose that M atom has only one
electronic energy level and that Fe atom has two electronic
energy levels (LS) and (HS) (others levels can’t be occu-
pied). The degeneracy of the fundamental level, (LS), is
g(LS) = 1 and that of the excited level, (HS), is g(HS) = r.
We call ∆ the difference in energy between the two lev-
els. To each Fe atom we associate a fictitious-spin σ̂ which
has two eigen-values σ = ±1. Eigenvalue −1 (resp.+1)
corresponds to electronic level (LS) (resp. (HS)).

Neighbouring atoms i and i+1 (i = 1 to N) are as-
sumed to interact with an elastic force constant ki,i+1.
We assume the periodic conditions, so the atom N is elas-
tically linked to the atom 1.

The total Hamiltonian of the chain is then the sum:

H = Hspin + Hphonon (1)

where the spin Hamiltonian, Hspin, is

Hspin =
∑

i

′ ∆

2
σ̂i (2)

where
∑′

corresponds to the summation on the Fe atoms.
The phonon Hamiltonian Hphonon is

Hphonon = Ec + Ep (3)

Ec is the total kinetic energy of the chain and Ep its elastic
potential energy. The kinetic energy can be written

Ec =
N∑

i=1

p2
i

2mi
(4)

where pi is momentum of atom i, and mi its mass. The
mass of atom i is equal to mFe, when this atom is a Fe
atom, and to mM when it is a M atom.

The potential energy can be written

Ep =
N∑

i=1

1
2
ki,i+1(ui+1 − ui)2. (5)

In this expression, ui is the displacement of the ith atom
from its equilibrium position which we assume to be inde-
pendent of the electronic states of the atoms. Due to the
periodic condition, up+N = up for p = 1, 2, . . . , N .

We assume that the elastic force constant ki,i+1 is
equal to ei,i+1 when atoms i and i+1 are both Fe atom,
to ηi,i+1 when one of both atoms is Fe atom and the other
M atom and to k3 when both atoms are M atoms.

For ei,i+1 we use the assumptions done for non diluted
compounds [33,34]. Thus, ei,i+1 is equal to λ when both
Fe atoms are in (LS) state ( or in the fundamental level),
to ν when both are in (HS) state ( or in the excited level)
and to µ when one atom is in the (LS) level and the other
in the (HS) level. Moreover we assume that

λ > µ > ν. (6)

For ηi,i+1, the elastic force constant between a Fe atom
and a M atom first neighbour, we assume that it is equal
to k1 when the Fe atom is (LS) and to k2 when it is (HS).

The expression of ei,i+1 in terms of the fictitious spins
of the atoms i and i+1 is [33]

ei,i+1 =
λ + 2µ + ν

4
+

ν − λ

4
(σ̂i+σ̂i+1)+

λ− 2µ + ν

4
σ̂iσ̂i+1.

(7)
Using this expression of ei,i+1 in the relation (5),
Ep(Fe−Fe), the elastic potential energy between two Fe
atoms first neighbours, i and i+1, can be decomposed as

Ep(Fe−Fe) = V0 + V1 + V2 (8)

with
V0 =

λ + 2µ + ν

8
(ui+1 − ui)2 (9)

V1 =
ν − λ

8
(ui+1 − ui)2(σ̂i + σ̂i+1) (10)

and
V2 =

λ− 2µ + ν

8
(ui+1 − ui)2σ̂i+1σ̂i.

In the energy term V1, each spin appears as submitted
to a field-like term which depends on the atoms displace-
ments. In V2 two spins first neighbours appear as coupled
by an exchange-like term which also depends on the atoms
displacements.

The expression of ηi,i+1 in terms of the fictitious-spin
of the Fe atom is

ηi,i+1 =
k1 + k2

2
+

k2 − k1

2
σ̂i. (11)

In this expression it is assumed that the atom i is the Fe
atom.
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Using the relation (11) in the relation (5), Ep(Fe−M),
the elastic potential energy between a Fe atom, i, and a
M atom first neighbour, i+1, can be decomposed as

V3 =
k1 + k2

4
(ui+1 − ui)2 (12)

and
V4 =

k2 − k1

4
(ui+1 − ui)2σ̂i. (13)

In the energy term V4, the Fe atom fictitious spin, σ̂i,
appears as submitted to a field-like term which depends
on the atoms displacements.

In the next section, we study the chain Hamiltonian.

3 Effective elastic force constant K

3.1 Self-consistent equations

We have studied the chain Hamiltonian H , (Eq. (1)), by
using a variational method [35,36]. We introduce a varia-
tional Hamiltonian H0 which is easy to study and which
depends on a few number of parameters. We write

H = H0 + H −H0. (14)

By considering (H−H0) as a perturbation as compared to
H0, it is possible to calculate F̃ , the free energy associated
to H . At the first order

F̃ = F0 + 〈H −H0〉0 (15)

where F0 is the free energy associated to H0 and 〈H−H0〉0
is the thermal mean value of H −H0 calculated by using
the density matrix associated with H0 at temperature T .

For H0 we take a periodic Hamiltonian:

H0 = H0s(h, J) + H0ph(K, ma) (16)

with

H0s(h, J) =
N∑

i=1

−hσ̂i +
N∑

i=1

−Jσ̂iσ̂i+1 (17)

and

H0ph(K, ma) =
N∑

i=1

p2
i

2ma
+

N∑

i=1

K

2
(ui+1 − ui)2. (18)

The Hamiltonian H0s(h, J) is that of a linear chain of
N fictitious spins in presence of an uniform field, h, and
interacting with an exchange constant, J , which is the
same between any first neaghbours pair.

As for the Hamiltonian H0ph(K, ma), it is that of a
linear chain of N atoms, with equal masses, ma, attracting
one another with an elastic force constant K.
The Hamiltonian H0s(h, J) can be studied by using the
transfer matrix method [37]. Using this method, F0s, the
free energy related to H0s(h, J), is

F0s = −NkT
ln r

2
−NkT ln A (19)

with
A = exp (βJ) coshβhr +

√
B (20)

and
B = exp (2βJ) sinh2 βhr + exp (−2βJ). (21)

In the above relations, kT is the thermal energy, β = 1
kT

and
hr = h + kT

ln r

2
. (22)

The relation (22) takes into account the degeneracy of the
excited level ((HS) level).

Since the field h and the exchange constant J are inde-
pendent of the site i, the mean values 〈σ̂i〉 and 〈σ̂iσ̂i+1〉 are
independent of the site i. So, we introduce the parameters
m and s defined by

m = 〈σ̂i〉 for i = 1, N (23)

and
s = 〈σ̂iσ̂i+1〉 for i = 1, N. (24)

In the transfer matrix method the parameters m and s
verify [37]

m =
exp(βJ) sinh βhr√

B
(25)

and

s = 1− 2 exp(−2βJ)
A
√

B
. (26)

The expression of F0ph, the free energy related to the
phonon Hamiltonian, H0ph(K, ma), is well known. It is
given by

F0ph = kT
∑

α

ln
(

2 sinhβ
�ωα

2

)
(27)

where
∑

α is the sum over phonon normal modes. The
frequencies of the normal modes are given by

ωα = ωM(K, ma))
∣∣∣sin

απ

N

∣∣∣ (28)

where α = 0,±1,±2, ....,±(N
2 − 1), N

2 . The maximum fre-
quency is given by

ωM(K, ma) = 2
√

K

ma
. (29)

The free energy associated to H0 is then

F0 = F0s + F0ph. (30)

As mentioned previously, the free energy associated to H
is

F̃ = F0 + 〈H −H0〉0. (31)

It is clear that F̃ depends on the temperature, on the
parameters introduced in H0, that is h, J , K and ma,
and on the parameters contained in H . To improve our
approximation, we must choose the parameters introduced
in H0 such as to minimize the function F̃ (h, J, K, ma), the
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temperature and the parameters introduced in H being
constant.

The minimization of F̃ versus the variational parame-
ters h, J , ma and K, leads to the equations:

1
ma

= (1− c1)
1

mFe
+ c1

1
mM

(32)

where c1 is the concentration of M atoms in the chain.
Calling N1 the number of M atoms in the chain,

c1 =
N1

N
(33)

K = (1−2c1 + c2)〈ei,i+1〉+2(c1− c2)〈ηi,i+1〉+ c2k3 (34)

where c2 is the concentration of sets (M-M), that is the
concentration of pairs of atoms M which are first neigh-
bours. If we call N2 the number of sets (M-M) in the chain,
c2 is given by

c2 =
N2

N
. (35)

The thermal mean values contained in the relation (34)
are given by

〈ηi,i+1〉 =
k1 + k2

2
+

k2 − k1

2
m (36)

and

〈ei,i+1〉 = 2µ + λ + ν

4
+

ν − λ

2
m +

λ− 2µ + ν

4
s. (37)

The parameters h and J are given by

h = −(1− c1)
∆

2
+

3〈H0ph(K, ma)〉
4NK

× ((1− 2c1 + c2)(λ− ν) + 2(c1 − c2)(k1 − k2)) (38)

and

J = −(1 − 2c1 + c2)(λ − 2µ + ν)
3〈H0ph(K, ma)〉

8NK
. (39)

In the above relations we have taken into account the
three phonon polarizations. For simplicity, we have as-
sumed that the phonon energy is independent of the po-
larization [33].

Inserting in F̃ the expressions of h, J , ma and K
given by the equations (32, 34, 38 and 39), we obtain F ,
the chain free-energy corresponding to the approximation
made in this study. The expression of F is given in Ap-
pendix A.

When the elastic force constants values, the masses
and the degeneracy r are fixed, the free-energy is only a
function of ∆ and T . The expression of the free-energy
differential and that of the chain entropy are given in Ap-
pendix A.

3.2 Chain isotherms study

To solve numerically the self-consistent equations
(Eqs. (25) and (26)), we take �ωM(λ) as the unit of en-
ergy and λ as the unit of elastic force constant value. We
introduce the following reduced parameters:

• the reduced temperature t

t =
kT

�ωM(λ)
(40)

• the reduced electronic excitation energy δ

δ =
∆

�ωM(λ)
. (41)

We also introduce the dimensionless parameters:

• the elastic force constants ratio x

x =
ν

λ
(42)

• the parameter y defined by

µ =
λ + ν

2
+

λ− ν

2
y. (43)

Due to the assumptions made on the elastic force constant
values for the non diluted chain [33,34], the parameters x
and y must verify the conditions

0 < x < 1 (44)

and
−1 < y < 1. (45)

By solving numerically the self-consistent equations, we
have studied the chain isotherms in the δ-m plane. This
study allows us to obtain the coordinates δC and tC of the
chain critical points, and to obtain, for t < tC , the values
of δ at the first order phase transition. Consequently, we
can deduce the chain phase diagram in the δ-t plane. From
this phase diagram we can predict the thermal behaviour
of the parameter m. Indeed, the thermal variation of m
displays a discontinuity when the value of the chain pa-
rameter δ is lower than the critical value δC , and this
thermal variation is continuous when the δ value is higher
than the δC value (see liquid gas transition in the pressure-
temperature phase diagram).

4 Results

The role of the phonon parameters λ, µ and ν has been al-
ready studied in the case of the non diluted chain [33,34].
So, in this article we are essentially concerned by the role
of the parameters k1, k2 and k3. Following the basic as-
sumption of the model, we take

k2 �= k1 (46)
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and we introduce the elastic force constants ratio z

z =
k2

k1
=

k(HS−M)

k(LS−M)
(47)

with
z < 1. (48)

For lack of information and for simplicity, in this study we
take

k1 = k3 = λ. (49)

As for the masses, we admit that

mFe = mM. (50)

Indeed, when, in a (SC) molecule, we replace iron by
cobalt or by another transition metal, the relative vari-
ation of the molecule mass is small, near of 0.005.

4.1 Chain phase diagram in the δ-t plane

For x = 0.2 and y = 0.00 the non diluted chain displays a
first order phase transition between the (LS) and the (HS)
states and the transition line does not display in the δ-t
plane a critical point [33]. In this article, we have studied
how that transition line is modified when the parameters
c1, c2 and z vary. In the Figures 1 to 7, x = 0.20 and
y = 0.00. In the numerical study the size of the chain is
N = 2000.

When Fe atoms are progressively replaced by M atoms
the transition line is shift and a critical point appears.
The numerical study allows to separate the role of the
parameter z from that of the parameter c2.

The position of the chain transition line and that of
the critical point for different values of the parameters c1

and z are shown in Figure 1. In this figure, c2 is kept equal
to zero; that means that there is no set (M-M), or no pair
of M atoms first neighbours.

As shown in the Figure 2, the position of the transition
line and that of the critical point in the δ-t plane depends
also on the value of c2. For the following, we use for c2 the
value

c2 =
N1

N

N1 − 1
N − 1

. (51)

As N and N1 are large compared to the unit, we can take

c2 = c2
1. (52)

That value of c2 corresponds to the mean value of the
number of set (M-M) in the chain, the mean value being
taken on all the chain configurations.

The chain transition lines for different values of c1,
the M atom concentration, are shown in the Figure 3 for
z = 0.48 and in the Figure 4 for z = 0.46.

Fig. 1. Dilution effect on the chain phase diagram in the δ-t

plane for different values of c1 and of the ratio z =
k(HS−M)
k(LS−M)

.

In Figures 1 to 4, the black full line is the first order phase
transition line for the non diluted chain; this transition line
is not ended by a critical point;the chain is (HS) (resp. (LS))
below (resp. above) this line. Dilution shifts the transition line
toward high (low) values of δ for low (high) values of z. More-
over critical point appears with the dilution.

Fig. 2. Influence of the parameter c2 on the chain phase di-
agram. When c2 increases the transition line is shift toward
small values of δ and the coordinates, δC and tC of the critical
point, decrease. For now on we set c2 = c2

1.

Fig. 3. Phase diagrams of the diluted chain for z = 0.48 and
for different values of c1. The coordinates of the critical point
decreases when the dilution increases. As shown in the figure,
the abscissa of the intersection points between these transition
lines with the horizontal line δ = 0.573 are close each other.
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Fig. 4. Phase diagrams of diluted chain for z = 0.46 and
for different values of c1. The coordinates of the critical point
decreases when the dilution increases. As shown in the figure,
the abscissa mentioned in Figure 3 are more separated.

4.2 Thermal variation of the high-spin fraction

Let us call N+ and N− the numbers of Fe atom in the
(HS) and (LS) states respectively. It is clear that

nHS =
N+

N −N1
(53)

where N − N1 is the number of Fe atoms in the chain.
Moreover we have

N+ + N− = N −N1 (54)

and
(N −N1)m = N+ −N−. (55)

From the above equations we deduce

nHS =
1 + m

2
. (56)

So the expression of nHS as a function of m is the same
for the diluted chain as for the non diluted one.

In order to calculate the thermal variation of the high-
spin fraction, we fix the values of the phonon parameters
(x, y, z), that of the electronic parameters (δ, r) and that
of the dilution parameters (c1, c2 = c2

1), and we solve the
self-consistent equations for different temperature values.

When the spin conversion takes place through a first
order phase transition our numerical study shows the exis-
tence of thermal hysteresis. However, the calculated ther-
mal hysteresis can’t be compared to the observed one. So,
in this study, we only display the stable thermodynamic
states. So, in the case of first order phase transition, the
(HS) fraction displays a discontinuity at tHS, the transi-
tion temperature value.

When the spin conversion is continuous, the thermal
variation of (HS) fraction is characterized by the tempera-
ture value t 1

2
which is the temperature at which nHS = 0.5.

We have studied the thermal variations of nHS for the
phase diagrams displayed in Figures 3 and 4 (we recall
that x = 0.20, y = 0.00 and r = 5). For the value of
the chain parameter δ, we have taken a value independent

Fig. 5. Thermal variations of nHS for z = 0.48. For c1 = 0.45
(solid circle) the chain displays a first order phase transition at
the transition temperature value tHS = 0.02443. For c1 = 0.50
(open circle) the conversion is continuous and t 1

2
= 0.02217.

So the threshold value c1s (see text) is comprised between 0.45
and 0.50 for z = 0.48.

Fig. 6. Thermal variations of nHS for z = 0.46. For c1 = 0.55
(solid circle) the chain displays a first order phase transition
at tHS = 0.01634. For c1 = 0.60 (open circle) the conversion
is continuous and t 1

2
= 0.01439. So the threshold value c1s is

comprised between 0.55 and 0.60 for z = 0.46.

on the values of z and of c1. Let 0.573 be this value, so
δ = 0.573.

In Figures 3 and 4, it is clear that the coordinates δC

and tC of the critical points are depending on the values
of the parameters z and c1. Moreover, when z is fixed, δC

is a decreasing function on c1.
Consider first, the case z = 0.48 (Fig. 3). The δC val-

ues are 0.57348 and 0.56458 for the transition lines cor-
responding to c1 = 0.45 and c1 = 0.50 respectively. As
the critical value 0.57348 is higher than the chain δ value,
0.573, the thermal variation of nHS is discontinuous for
c1 = 0.45. But, as the value 0.56458 is lower than the
chain δ value, the thermal variation of nHS is continuous
for c1 = 0.50. Those results are shown in Figure 5.

Moreover, in Figure 3 (z = 0.48), as the value of δC de-
creases when c1 increases, it is clear that there is a thresh-
old concentration value, c1s, such as for c1 < c1s the ther-
mal variation of nHS is discontinuous and for c1 > c1s

this thermal variation is continuous. Following the results
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obtained for c1 = 0.45 and c1 = 0.50, it is clear that that
threshold value, c1s, is comprised between 0.45 and 0.50.

The values of tHS for z = 0.48 and c1 varying from
zero to 0.45 are shown in Figure 7. We have also reported
in this figure the value of t 1

2
for c1 = 0.50.

All that said for Figure 3, can be repeated for Figure 4
(z = 0.46). Only the value of the threshold concentra-
tion is different. As shown in the Figure 6, the thermal
variations of nHS is discontinuous for c1 = 0.55 while it
is continuous for c1 = 0.60. So, for z = 0.46, the value
of the threshold concentration is comprises between 0.55
and 0.60.

The values of tHS for z = 0.46 and c1 varying from
zero to 0.55 are shown in Figure 7. We have also reported
in this figure the value of t 1

2
for c1 = 0.60.

The “two-step” spin conversion observed in non di-
luted (SC) compound [7] has been reproduced in the atom
phonon coupling model by taking for the parameters x, y,
δ and r the respective values 0.20, −0.20, 0.606 and 5 [34].

For the diluted chain, keeping the above parameters
values and taking for z the value 0.40, we have calculated
the thermal variation of nHS for c1 equal to 0.11 and 0.22.
The results are shown in Figure 8. Our results look like
those observed by Köhler et al. [12].

5 Discussion and conclusion

Martin et al. have studied iron(II) dilution by nickel(II)
and cobalt(II) in the (SC) compound [Fe(btr)2(NCS)2] ·
H2O with (btr = 4, 4′−bis−1, 2, 4− triazole) [27] to [29].
In their studies, for the non diluted compound, the ther-
mal variation of nHS displays a thermal hysteresis which
indicates a first order transition. Due to this hysteresis,
the authors can’t determine the compound transition tem-
perature. They determine TC ↑ and TC ↓ which are the
temperatures at which the (HS) fraction, nHS, is equal to
0.5 in the heating mode and the cooling mode respectively.
And they assume that the transition temperature value is
the mean value of TC ↑ and TC ↓.

When iron(II) is progressively replaced by Ni(II) the
hysteresis width progressively diminishes and vanishes for
a Ni concentration near of 0.55, and the mean value of
TC ↑ and TC ↓ is constant whatever the concentration in
Ni(II) between 0.00 and 0.55. For a Ni concentration larger
than 0.55, the (SC) is continuous. For a Ni concentration
equal to 0.60 they have found for t 1

2
a value equal to the

previous mean value.
When iron(II) is progressively replaced by Co(II) they

found that the first order transition disappears for a Co
concentration near of 0.63 and that the mean value of TC ↑
and TC ↓ decreases. When the Co concentration increases
from 0.00 to 0.45 the relative decrease of this mean value
is near of 20 per cent.

In Figure 7 we see that the chain first order phase tran-
sition disappears for a M atom concentration comprises
between 0.45 and 0.50 for z = 0.48 and between 0.55 and
0.60 for z = 0.46. Moreover, when the M atom concen-
tration increases from 0.00 to 0.45, the relative decrease

Fig. 7. Variation of tHS, the chain transition temperature value
with c1 for z = 0.48 (open squares) and for z = 0.46 (open
circles). It is worth noticing that the relative variation of tHS

is much larger for z = 0.46 than for z = 0.48. For c1 > c1s, the
conversion is continuous and the abscissa of the solid square
(resp. circle) is the value of t 1

2
for z equal to 0.48 (resp. 0.46).

Fig. 8. Effect of dilution on the high spin fraction in the case
of the “two-steps” spin conversion. The full line corresponds
to the non diluted chain. It is obtained for x = 0.2, r = 5, y =
−0.20, δ = 0.606 and N = 2000 (see [35]). Taking z = 0.40 we
can qualitatively reproduce the behaviour observed by Köhler
et al. [12].

of the transition temperature is equal to 7.5 per cent for
z = 0.48 and to 28.5 per cent for z = 0.46. So our results
look like those of Martin et al. if we consider that the case
z = 0.48 corresponds to the dilution with Ni, and the case
z = 0.46 to the dilution with Co. So, in framework of the
atom-phonon coupling model, dilution with Ni and with
Co leads to two different behaviours because

k(HS−Ni) > k(HS−Co) (57)

where k(HS−Ni) is the value of the elastic force constant
between a molecule having for central ion an Fe ion in its
HS state and a molecule having for central ion a Ni ion,
and k(HS−Co) is defined in the same way.

It is worth noticing that in Figure 7, in the case
z = 0.48, the transition temperature increases for low con-
centrations of M atom. Or, in some (SC) compounds, iron
dilution shifts toward high temperature values the curve
representing the function nHS(T ). Moreover, in our study,
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this small effect can be suppressed by taking for z a value
lightly smaller than 0.48.

In the case of dilution with Co, Martin et al. have
observed at very low temperature an amount of residual
high-spin form which gets larger for a concentration value
in Co higher than 0.60. Such result which have not been
obtained in the present study could be obtained by modi-
fying the value of the parameter k3 of the model. However,
as shown in the equation (34), this parameter is multiplied
by the weight c2 which is large only for large dilution. Or,
the method used in this article is based on the assumption
that the Fe atom dilution is not too large. So, the presence
or not of residual high-spin form at low temperature can’t
be done in this study. We underline that the parameter
k3 of the model, corresponds to the elastic force constant
k(Co−Co) or k(Ni−Ni) in the studies of Martin et al.

From our study, we can conclude that the atom-
phonon coupling model allows us to reproduce qualita-
tively the high spin fraction thermal behaviours observed
in diluted spin conversion compounds.

We recall that the basic assumption of this model is
that the elastic force constant value between two atoms is
reduced when one atom becomes (HS). Now, we can ask
why this elastic force constant value varies?

Let us consider the Lennard-Jones potential between
two molecules of a (SC) compound. The pair potential
energy is

U =
A

r12
− B

r6
. (58)

This energy form has a repulsive potential energy ( or
Fermi term) and a van der Waals attractive term. The
values of the A and B positive constants depend on both
molecules and r is the distance between both molecules.

The equilibrium value of the intermolecular distance,
d, is found by setting the derivative of U with respect to
r equal to zero. Thus

dU

dr
= 0 =

−12A

r13
+

6B

r7
(59)

from which

d =
(

2A

B

) 1
6

. (60)

The value of the elastic force constant for vibrations
around the equilibrium distance is equal to the value, for
r = d, of the second derivative of U with respect to r.
Thus calling k this elastic constant value

k =
156A

d14
− 42B

d8
. (61)

From the equation (60) we can express A as

A =
Bd6

2
. (62)

Reporting this value of A in the equation (61) we obtain

k = 36
B

d8
. (63)

It is well known that in (SC) compound the size of a
molecule increases when it becomes (HS). So the equilib-
rium distance between two molecules increases when one
or both become (HS). So we have

d(HS−HS) > d(HS−LS) > d(LS−LS). (64)

So, if we assume that the van der Waals constant B does
not vary or does not vary too much when one or both
molecules become (HS), one can conclude from the rela-
tions (63) and (64) that in a non diluted compound

k(HS−HS) < k(HS−LS) < k(LS−LS) (65)

which is the assumption made in the atom phonon cou-
pling model for non diluted (SC) compound.

In the present study, analyzing the results obtained by
Martin et al. we have concluded that k(HS−Co) < k(HS−Ni).
Following the previous discussion, this relation can be due
to the fact that in the compound studied by Martin et al.

d(HS−Co) > d(HS−Ni). (66)

It will be interesting to determine for the (SC) compound
studied by Martin et al. the sizes of the molecules contain-
ing Co and Ni ion. Such study can be done by ab initio
calculations.

As pointed by Sorai [38], there are in molecular com-
pounds different types of first order phase transitions
which are accompanied with a change in the electronic
state of the molecules, and (SC) compounds are only one
of those types. In the case of (SC) compounds the change
of the electronic state leads to vary the Fermi parame-
ter, i.e. parameter A, in the Lennard-Johns potential. We
can imagine that, in others types, it is the van der Waals
parameter, i.e. parameter B, which varies in such a way
that we can describe the experimental results by using the
atom phonon coupling model.

In this article as in the two previous one [33,34], we
have only taken into account the inter-molecular vibra-
tions. Or, it is known that some frequencies of intra-
molecular vibrations decrease when the molecule become
(HS). So the atom-phonon coupling model can be ex-
tended so as to include the intra-molecular vibrations.
However, it is worth noticing that the lowest frequencies
values of the inter-molecular vibrations are near of zero,
while the values of the intra-molecular vibrations frequen-
cies are typically 400 K. So, the intra-molecular vibrations
frequencies are less excited at low temperature than those
of the inter-molecular vibrations.

We are indebted to L. Chassagne and D. Haddad for their help.
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Appendix A

A.1: Chain thermodynamic function

In the used approximation, F, the chain free-energy is

F = −NkT

(
Lnr

2
+ ln A

)
+ 3kT

∑

α

ln
(

2 sinhβ
�ωα

2

)

+ (N −N1)
∆

2
m + NJs + Nhm. (67)

The meaning of the different parameters are contained in
Section 3.1.

A.2: Chain free-energy differential and entropy

Taking the infinitesimal variation of F, we find

dF = −SdT + (N −N1)md
∆

2
(68)

where S, the chain entropy, is given by

S = Sspin + Sph (69)

with

Sspin = −N
h m + Js

T
+ Nk ln A + Nk

ln r

2
(70)

and

Sph =
3〈H0ph(K, ma)〉

T
− 3k

∑

α

ln
(

2 sinh β
�ωα

2

)
. (71)

The spin entropy is that of N spin (±1) interacting with
first neighbour exchange interaction and submitted to the
applied field h. The phonon entropy is that of a periodic
chain with elastic force of constant K.
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12. C.P. Köhler, R. Jakobi, E. Meissner, L. Wiehl, H. Spiering,
P. Gütlich, J. Phys. Chem. Solids 51, 239 (1990)

13. J. Wajnflasz, Phys. Stat. Solidi 40, 537 (1970); J.
Wajnflasz, R. Pick, J. Phys. France 32, C1 (1971)

14. A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden,
F. Varret, J. Phys. I France 2, 1381 (1992)

15. Y. Garcia, V. Ksenofontov, G. Levchenko, P. Gütlich, J.
Mater. Chem. 10, 2274 (2000)

16. P. Poganiuch, S. Decurtins, P. Gütlich, J. Am. Chem. Soc.
112, 9, 3270 ( 1990)

17. P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int.,
Engl. 33, 2024 (1994)

18. E. Freysz, S. Montant, S. Létard, J.-F. Létard, Chem.
Phys. Lett. 394, 318 (2004)

19. A. Boussksou, N. Negre, M. Goiran, L. Salmon, J.-P.
Tuchagues, M.-L. Boillot, K. Boukheddaden, Eur. Phys.
J. B 13, 451 (2000)

20. D. Chernyshov, M. Hostettler, K.W. Törnroos, H.-B.
Bürgi, Angew. Chem. Int. Ed. 42, 3825 (2003)

21. N. Ould Moussa, G. Molnár, S. Bonhommeau, A. Zwick,
S. Mouri, K. Tanaka, J.A. Real, A. Bousseksou, Phys. Rev.
Lett. 94, 107205 (2005)

22. M. Sorai, J. Ensling, P. Gütlich, Chem. Phys. 18, 199
(1976)

23. D.N. Hendrickson, M.S. Haddad, W.D. Federer, M.W.
Lynch, Coord. Chem. 21, 75 (1981)

24. M.S. Haddad, W.D. Federer, M.W. Lynch, D.N.
Hendrickson, Inorg. Chem. 20, 131 (1981)

25. M.S. Haddad, W.D. Federer, M.W. Lynch, D.N
Hendrickson, J. Am. Chem. Soc. 102, 1468 (1980)

26. A. Hauser, Gütlich, H. Spiering, Inorg. Chem. 25, 4245
(1986)

27. J.-P. Martin, J. Zarembowitch, A. Dworkin, J.G.
Haasnoot, E. Codjovi, Inorg. Chem. 33, 2617 (1994)

28. J.-P. Martin, J. Zarembowitch, A. Bousseksou, A.
Dworkin, J.G. Haasnoot, F. Varret, Inorg. Chem. 33, 6325
(1994)
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